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Abstract

In this paper, we develop, analyze, and test a new algorithm for nonlinear least-squares
problems. The algorithm uses a BFGS update of the Gauss-Newton Hessian when some hueristics
indicate that the Gauss-Newton method may not make a good step. Some important elements
are that the secant or quasi-Newton equations considered are not the obvious ones, and the
method does not build up a Hessian approximation over several steps. The algorithm can be
implemented easily as a modification of any Gauss-Newton code, and it seems to be useful for
large residual problems.
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Nonlinear least squares, quasi-Newton methods, least-change secant update methods, variable
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1. Introduction

Nonlinear least-squares problems are frequently encountered in practical optimization, and
they are also of interest to the algorist because of their highly structured nature. In this paper,
we suggest another way to use this structure in an attempt to increase the efficiency of the trust-

region-Gauss-Newton or Levenberg-Marquardt algorithm, Moré€ (1977), Dennis-Schnabel (1983).

The algorithm presented here is inspired by NL2SOL, Dennis, Gay, Welsch (1981a,b), in
that it chooses at each iteration whether to use a Gauss-Newton quadratic model or a variable
metric augmentation of the Gauss-Newton model to define the next iterate. The difference is that
the variable metric augmentation used here requires less storage, less algebra, and less code than
NL2SOL. However, it seems to have no better theoretical justification than the Gauss-Newton
method. Still, it seems to use fewer residual and Jacobian computations than the Gauss-Newton
for some large residual problems and to require little additional arithmetic at each iteration.
Conversation with NL2SOL users encouraged us to undertake this research, and we publish it now
in hopes that they will find it helpful and that our colleagues will find it an interesting use of

secant updating ideas.

Section 2 explains the augmented local model in its various forms, and points out some
overlap between our ideas and those of Al-Baali and Fletcher (1983).. Section 3 contains a unified
local convergence proof under standard Gauss-Newton-type assumptions for all combinations of
the methods presented here. Section 4 describes a model-switching strategy and the resulting
hybrid algorithm that adaptively decides whether to use the Gauss-Newton model or an augmen-
tation at each iteration. Section 5 compares an experimental implementation of the algorithms
suggested here to the LMDER implementation of the Gauss-Newton method and the NL2S1 rou-

tine from NL2SOL.



2. The Augmented Model.

Let F: C R?P—R" be continuously differentiable, and consider the nonlinear least-squares

problem of finding a local minimizer z, for

8(z) = TFE)TF() = TR (21)

f=1
The classical algorithm for this problem is the Gauss-Newton method which can be thought of in

two ways:

First, we can linearize F(z) - F(z.) about the current parameter vector z, to obtain the

local affine model for F(z),
F(z) = F(z,) + J.(z-z.),

af;

where J, = J(z.) = F’(z.) = ( F)
Zj

z.)). Then we can seek to improve z, by taking the next
(4

estimate z_ to be the value of the parameter vector that solves the linear least-square problem

defined by the local affine model.

The sum-of-squares-of-residuals of this model is
Pz + I, (22 )] T(F () + Tz -2)] (2.2
and it can be viewed as a local quadratic model of ¢(z) of the form

#(z) =~ mSN(z) = ¢(z,)+ v(z.)T(z -2.)+ %(z—zc)TJ,TJc(z—:,) . (2.3)

A second way to view this local quadratic model is as an approximation to the Newton

model

mMz) = ¢(z.) +vo(z.) (z-2.)+ —;—(1 ~z.) ' %(z. )(z-2.) (2.4)

where



V() - LT, = 32 fi(z )0 (=) = S(z.) (2.5)

=1

is approximated by the zero matrix. It is easy to reason from either derivation that the difference
between the two models depends on the size of the residuals F(z,) and on how nearly affine F is

in a neighborhood of z,.

Aside from the obvious advantage that the Gauss-Newton method has of not having to com-
pute or make assumptions about the n p X p Hessians y%fi(z,), =1, ..., n, it also is guaranteed
to | generate descent directions as long as J, is of full rank. This happens because
v2m&Mz,) = J.7J, is positive definite, and it means that the next iterate 2SN can be calculated
by solving the linear least-squares problem associated with (2.2) for 8N =2%¥_z,. This leads
to a useful simplification over Newton’s method of the problem of proceeding from a poor initial

guess when w?¢(z,) may not be positive definite even though v%¢(z,) is.

The major disadvantage of (2.3) with respect to (2.4) is that neglecting S(z,) often leads to
a significantly less accurate local model. It is not surprising that this would cause slower conver-
gence near a local minimizer of a large residual nonlinear problem; however far from z,, it results
GN

often either in z{" not being an acceptable next iterate when z% is, or in a smaller residual

reduction than Newton’s method provides.

NL2SOL essentially retained the Newton advantages without having to compute S(z.). It
did this by using a variable metric update method and an adaptive modeling technique to switch

between the Gauss-Newton model and an augmented model of the form
1
m}(z) = ¢(z.) + ve(z) (-2 )+ Sz -2) LTV + S )z -2,) (2-6)

where S, is a variable metric approzimation to S(z.) and J, =J(z.). Here as in NL2SOL, the
decision is made at the end of the current iteration whether to use the Gauss-Newton or its vari-
able metric augmentation to make the next step. This decision is based on a simple comparison of
the actual residual reduction ¢(z.)-¢(z,) to the predictions ¢(z.)-mENz,) and ¢(z,)-m(z,).
The algorithm suggested here does not attempt to build up a good approximation to S(z,) over

several iterations; it temporizes a cheap rank-2 approximation if a given iteration seems to call for



it.
We complete this section with a description of the way we suggest defining S, in (2.6) and

with some basic facts about this definition. We postpone a discussion of implementational details

until Section 4.

Given z,,z_, J,, J_, F., F_, information at the current and previous iterate,

Set s. =z, —z_and 0< o, <min{ 1, ||JTF.]| }; (2.7)
Set either
y. = JI[J.s_+ a,(F, - F)] (2.8a)
or
y. = JIJ.s_+ a (JIF, - JTF), (2.8b)
or
y.= JI.s_+ a (JEF-JD)F,, (2.8¢)
and either

T T T
opras _ Y-y-  JeJes s JIJ,
SBFGS —

- ) 2.9
sTy. sTJIJ, s (2.92)
or

orp W= IE e I + y(y-JlJs)T sT(y_—JTJ. s )yyT

SDFP — 7 - RV . (2.9b)
sly. (sy.)
Note that with any pair (2.8), (2.9), we have

(JIT. + S.)s_ =y, (2.10)
and that a, = 0 recovers the Gauss-Newton method. If we take a, = 1, then we obtain the two

methods that Al-Baali and Fletcher (1983) call the GN-BFGS and GN-DFP methods. Our proof
techniques can not support always taking o, = 1, and so our analysis does not apply to their

methods. Our numerical results suggest that a, = 1 is not always the best choice.

It is tedious, but not difficult, to show that if J, has full rank and sTy_>0, then H, = JIJ, + S,

is positive definite and



o~ g0 + o o~ (JT4, ) )"

(HEFOSy = (J2J, + BP0y = (JTJ )+ :

sy
2.11
3/—1‘["—_(‘]!‘]: )-ly—]a-a—T ( )
(sTy)
In fact, if any symmetric nonsingular matrix A replaces JTJ, in (2.9), then
. T T T
82 82 8_8"
(A + SEFOSy1 |1_ v ] A“[I— v ] b (2.12a)
sy s’y sly_
and
T T\ T T
8 8- _yl
Assor— |- X ]A[I- i ] + 2= (2.12b)
sly_ 6-y 82y

3. Local Convergence.

In this section, we will present a local convergence analysis for the quasi-Newton or
Newton-like method based on the augmented local model discussed in the previous section. Our
major result, Theorem 3.4, will be the same as the standard local result for the Gauss-Newton
method (see Dennis (1977); indeed, if we always choose @ =0, then the new method is easily seen
to be the Gauss-Newton method. It will be convenient to collect some useful bounds before we
start the main proof. We will always use the [, norm for both vectors and matrices, and for
z€R", and € >0, N(z;6)={% €R": ||z —z|| <e¢}. For any set DCR", D will denote the norm

closure of D.

Lemma 8.1. If z,y are two vectors of order n such that z7y=1, I is unit matrix of order n

then
-2y |l = ll=ll-ll¥]l -
Proof. Straightforward.

Lemma 8.2, Let F:R" —R™ be continuously differentiable in an open convex set D C R"*, and

let J be Lipschitz continuous in D:

1J(z) - J@)|| < vllz -7, (3.1a)
for any z, T€D. Then,



1I(=2)" - J@T|| < Allz -7, (3.1b)
| F(z)-F(z)-J(@)z-7)|] < %Hz—fllz: (3.2)
and if D is compact, then for oy > max|| J(z )||,
ieb
| H(z)TI(z) - J@)TIE)]] < mllz -7, (3.3)
()T F(z)-J@)TFE)I < wllz-Z||, (3.4)
for v, = 270y and 7, = afl+'7'§ng>l§HF(5 )]

Proof. See Dennis and Schnabel (1983) pg.75 for (3.2). The Lipschitz condition (3.1b) follows

directly from the fact that the {5 norm of a matrix and its transpose are the same. The Lipschitz
condition (3.3) follows because

17z)7I(@)- (@) ()| < 1V@TIE)- (=) + | [IE)-T(2)TI(=)]] < 2oullZ-2]],

where gy, exists because D is compact. Finally, to get (3.4),

()T F(z)-J@)TF@)| < [[J@)TF2)-F@I + [[(=)-I@]TF)]|

< UM{]|J(5+8(1‘E))Il N2-Z|]d6 + 7]z - Z]|-[| F(z)|| < %llz-7Z]|.

Lemma 8.3. Let the hypothesis of Lemma 3.2 hold and let z,€D. If J(z,)TJ(z,) is positive
definite with smallest eigenvalue X\,, then for any p€(0, 1), there exists ¢ >0 such that for

T,zE€EN(z,:¢) and s =F -1z,

A
sTJ(Z)T[F(3)-F(z)] > ”2'8% . (3.5)
Also, J(z)TJ(z) is positive definite with smallest eigenvalue greater than p-A, and satisfies the
Lipschitz condition:
N @TIE-[I(2) @) < % llZ-2]l, (3.6)

T

for some ; < ——— .
(p))

Proof. Because J(z)TJ(z) is continuous at z,, there exists § >0 such that the smallest eigenvalue

of J(z)T J(z) is larger than p-\, for all || z—z, || <§&. Thus, J(z)TJ(z) is invertible and



1

I [J(=)TI=) ] < 5

. (3.7a)

.

For any 7, z € N(z,;$),

V@@ - @I < N@TI@ - I1@)TI@)- (@)= |- @) T

1 =
Pnllz-z||

<
—(p~>\,

by (3.7) and (3.3).

A
p ; }. So for any p €ER", z € N(z,;¢), the inequality
OM

Now set ¢ < min{$,

pXxcp 2 < pTI(2)TI(2)p (3.7b)

holds. Now suppose T,z € N(z,;¢), then from the previous lemmas and the Cauchy-Schwartz-
Bunyakovskii inequality, we have
— — — o 1
|[J(@)s)T|F(Z)-F(2)]- [J(Z)s]"[J(Z)s]| < onlis]] z v llell?
1 —
< sonlllz-z |+ llz-= ] |5 ]|?

2

pX
< vomells]* < —=-{ls]I?.

2
Therefore,
@7 IE)e)- 255 1o 12 < WER)TIFE)-F(@)] < U@l 1I@]+ 2 ]2
Hence
STIETFE)-F(@)] 2 o 122 1o 12 = L2542 > 0.

Theorem 8.4. Let the hypothesis of Lemma 3.3 hold and assume that z, is the only local minim-

izer of ¢ which is convex in D. Assume that for some v, < X\, and every €D,

(@) -I ()T F(z)]| v lle-a]] - (3.8)

~
ts

Let TG(T,

1). Then there exists € >0, such that for all o€ N(z,;¢), the following sequence gen-

erated by any combination of the Gauss-Newton method with its BFGS and DFP augmentations

is well defined and converges to z, with ||z,,,~2,|| < r||lzs~2,||:



zy = zo~(JE o) i Fy
For k=1,2,3,...; DO

8.1 = Tx—2;; , choose 0 < a; < min{l, ||JFF:||};

H s+ ax(Fe—Fyy))
or

Veor = § S ke + oan(JTFy - T F ),
or

sy + (I - JE, )Fy;

T T T T
_ opras _ WY Ji Jegeasiy Ji
Sy = Sk =

81 Yt oy I Iy $k-1

or

S, — GDFP _ (Yra- VR Gk-l)ykT-l + yk—l(yk—l_JkTJk 'sk—l)T 801 (Yo~ T Sk—x)yk-xykT-x

k T Yk - - ’
8K 1¥k-1 (81:T-1!Ik-1)2
Hy = J{J + S ;
— g, — H? JTF .

Te+l = Tp— 4 Jg Uy 5
END.
Furthermore, if 4, =0 or ||F(z,)|| = 0, then the convergence is at least q-quadratic.

Proof.  First we establish some more useful inequalities. Choose

A
-1
pE()\‘, ),

and take €, >0 to be as chosen by Lemma 3.3. From (3.4) and the fact that

J(z2,)TF(z,) = JTF, = 0, we see that if TEN(z,;¢;), then

1 J(2)TF(2)I| < % |lz-z,]| - (3.9)

Furthermore, by (3.2), (3.3), (3.8),



(@) F(2)-I7J(z~2) || < | I@)]] - |- F(z)- I (2 Xz~ 2) |
+{|J(=2)7I(2)=-JTL | Nz, 1| + [|(J(=)- J)TF, |

< ou L llz—z, 24 |2, [[+, [l 2 (3.10)
= (ullz=2,1|-+2) 22,1l

where "uEUM%-i—"h.

Similarly, for z_, z. € N(z,;¢;) and s_, a,, y_ defined as in (2.7), (2.8a), we get from (3.3)

2

(3.9), and the choice of a, < || JTF, ||, that for 5 = 7, + 7, max{cd, 72},

Ny~ Il T || = || I Jeo_+ a  JT(F.-F)-JTJ,s_||
S NS =TT+ 1 20Fe - F) | -
S W =TT sl + || JTF. || | JH(F. - F)|
Sullsll -Nee—z |l +voi s || Nz -2l <aslls|l Nz -21],
and for y_ defined by (2.8b),
” y_—J‘TJ‘s_” = ” JcTJc's-"'ac(JcTFc_J?F—)_JcTva—l|
S ”JcTJc"JtT‘Ic” “s—“ + HJCTFC ” '”JcTFc_J—TF—” (3'11b)
Slle-ll-Nee-z I+~ sl - [lze -2, || Swslls-ll-llzc-all,
and for y_ defined by (2.8¢),
”y—_‘]tTva—” = ” JCTJC s—+aC(JCT—J—T)FC_JaTJas—”
< VIZT =TT o |+ 1IZE, || 1| (J- TP, | (3.110)
<l lze -zl + ([l -1 Fe |l e ||z~ 2, ||
Soulle-ll e -z il +42 [s_ |l e -z || <wslla]l |z~ -
Also, a, <1, so for the three different y_ definitions and 44 = 0% + max{of, %},
ol < NI -Ne-ll +a | FWF-FI) < oflls_ll+odlls_ |l Smllsll, (3.12a)
Wyl < WA sl + e WEIF.~JTFJ)] < oflls_ |+ lls ll < wlls|l, (3.12b)
and
oIl < WITM M-l + o WIT-IDFN < o sl + s )] < wlls ]l . (3.12¢)
Finally, for the three y_ definitions, we have
sTy. = sTJ1J s +a sTINF.-F) > sTJTJ,s_ > pX,||s_||2 (3.13a)

from (3.5) and (3.7b}, and
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8Ty = 8T J.s_+a e T|JTF. - JTF ] > oTJTJ,8_ > p\,||5_||2, (8.13b)
since ¢ is convex on D. See Ortega-Rheinboldt (1970), pg 86. In the same manner,

sTy = sTJTJ s +a T [JT-JTIF, +a,sTITF_
= sTJTJ,s_+ 0, sT[JIF,-JTF ]+ a,sTJT(F,-F) (3.13c)
> Tl > o2, |l5_]]%.

These, (3.12), and Lemma 3.1 allow us to say in either case that

y_s_T y T

- Hy-Il-{ls]l Yo
I _ = == o M ——— = < = . 3.14
Il Ty | ”a_Ty_“ Iy-1I IIG_Ty_II 2Ty S =m (319
It will also be useful to have 3 = '772'71+'77'75(1 +77).
Now we prove the theorem by induction. Let r € ( L , 1) and take
*
. Y, . e r_2l
- x‘ X‘ X. x‘
€ < min{ €, ,
Y4 Y2 T8 Ya+ 8

’ 2 y
(1+m) 2

T4 2
+ —+ +
X, Y372 X, Y132 T Vs o) ?

Given any z,€ N(z,;¢), JET, is nonsingular by the choice of ¢;, so z, is well defined and from
(3.10), (3.6) and (3.9) we have
lz1-2, )l = |lzo-2,-(J5Jo) IS Fy)|
< WIRLY - IGFo= 3] (zo-2) || + 1(IT Ty = (JTT) A 1| JEF, ||

<1
DN

ullzo=2, 1)+ |20~ 2, || + 3l 20- 2, ] %2 || o~ 2, ||

*

7.
k‘

Y4
<[ -t s+

ez, || < rillzo-z,|| <e.

Suppose ||z;-z,|| < r||z;4-1,]| for j = 1,2,....,k. Then by Lemma 3.3, JIJ, is positive
definite and this together with (3.13) ensures that H; is positive definite in either case; so Tpy1
exists. Since either augmentation gives the Gauss-Newton step when a; = 0, we can concentrate

on the augmented steps. First, we will carry out the induction step for the BFGS augmentation.

By (2.10), (2.11), (2.12), (3.14), (3.10), (3.9), and (3.11),
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T
VHH) !IHH

Nzesr—2, || = |l z—z,~H'JTF, = (I- FAPAR I EE

k 1¥k-1 Bk-wk—x

Ve-1861 Ty 1T T Y18 818, T
= lmia,~{ (- )T o () - 222 200 g
Sk-1Yk1 Sk-1Yk-1 Sk-1Yk-1

——)iF ||

A g (T 2

k 1¥k-1 8k-1¥k-1

= |lag~—=z,-(JILY W F - {(I- =———

T
Sk-18k-1

Ye_188 Tr 7T 1 \-1 Y1881 Tryv-1y JT
T +(I-———)" (L) (I~ ——)- (VL)Y ||
Sk-_1Yk1 Sk-1¥k-1 Sk-1Yk1

T T
_ Ye-18k-1 _ _ Ye-18k-1
< -z, ~(JTLY HFe | + W - =) (ST~ (JTLY W - =) |- || R ||

Sk-1Yk-1 85_1 Ye-1
ok~ (I, ye )8l se1[sk1—(JTL) Ty T !Ik-x &y
+ | F + T (I- NRIEAA|
8k 1Yk-1 8k 1Yk-1 Gk 1¥k-1
'74”1"_10” +'7v
< 5 ze -2, || + vl 2 -2, |2
1 [vsllsk_lll‘llzk—l.ll'||8k-x|| Hakavs 1 skt 1l - 1l 2 — 2, 1| el 26—z, |
7112 k4,
)\t p>\‘”8k_1”2 p)‘c”‘sk—1”2
(3.15a)
Ve
< [)\ +{ +’77’73’72+’15>‘2 (I+v) el e -2, ||

< rilm-zll -

To complete the induction, let us consider the case when H; is the DFP augmentation of

J¥J,. From (2.12b), (3.3), (3.12), (3.13), and (3.14),

sT T T
Yi-15k-1 Yi-155-1 Ye-1Y5-1
W He= I || = |1 -——) Rl - T+
81: 1¥-1 Sk l.'/l: 1 Sk_1Yk-1
o7
18 _
L (I- Y1 lr I)JTJ(]_ Yi-18k- 1)T J'TJ‘”
31: 1Y%k-1 Gk 1Yk-1
Vi1~ 8iy T T Yk_1581 T
= [|({-———NJ e~ LI - ——)
Sk-1Yk-1 Sk-1Y%-1
(yk 1= JTT,8) v N Vkr(ve1- I, 80) T (I- Ve-1501 il
'sk 1Yk-1 GkT—l!/k—l skT—lyk—l
- R L A Sk_ -
< ol -t ¢ Al =l Wl Wl
Sk-1Yk-1 8k-1Yk-1
< (Fn+rsl+ ) la-2,]] = wllz-=2,]|

Thus,
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A
”Hk_JnTJo” S Y€ < ‘5‘_

and

1 X
A

*

2

_ 1
“(J:T‘In) l[Hk_JnTJO] “ S = E .

*

Hence by the Banach Perturbation Lemma (Dennis and Schnabel (1983), pg.45),

[IEAAR
R (ICARART: AT

1

'—-—-:i
X,

1
1-=
2

H | <

IA

1
A,
Finally,

”‘Tk-H_zc ” = “zﬁ_zt_Hk—leTFk ”

< ” _Hk—l ” : ” JkTFk _JaTJa(zk _zc)_(Hk - JnTJo)(zk —1‘) “

IA

2
lullze=z L+ ) -2, |+l 2 -2, 117

(3.15b)

IN

2
et w)d llze-z | < rllze-z,]] .

*

This completes the proof of g-linear convergence. If 4, = 0, then g-quadratic convergence follows

immediately from (3.15). Of course, if || F(z,) || = 0, then ~, = 0.

4. The Hybrid Algorithm.

In this section, we will describe a model switching strategy and give details of a hybrid algo-
rithm that adaptively decides at each iteration whether to use the Gauss-Newton model (2.3) or a
BFGS augmented model (2.6}, (2.9a). Much of the implementation follows MINPACK and
NL2SOL. Except for model switching, the basic algorithm is essentially the same as in the subrou-
tine LMDER of MINPACK. The model switching decision is borrowed from the ideas in the sup-

routine NL2S1 of NL2SOL. Among the major differences between our hybrid algorithm and the

one used in NL2SOL are:
(1) No doubling of the trust radius is tried internal to an iteration.

(2) If five unsuccessful steps are attempted in an iteration with the currently preferred model,

then the algorithm will start the next iteration with the other model.
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Before presenting the algorithm, we make some preliminary remarks that will also serve to
define the variables in the algorithm. The actual reduction ared, the predicted reduction pred,
and the directional derivative dirder are computed as in the subroutine LMDER. Moreover, the

updating strategies for the step bound A; and the Levenberg-Marquardt parameter \ are also

taken from that routine.

The extra work involved in trying the alternate model in any iteration after the currently
preferred model step has been computed is not significant. To see this, suppose that the alterna-
tive is the BFGS augmented model. We would already have the factorization

Je=QR,
and if we follow Goldfarb (1976), Dennis-Schnabel (1981) or (1983, pp.200-201), and define

Jorgs = S + w’

Jis_ (y-—t - JlJgs.) Vyis. (4.1)
where u = = ,and = ——m—m——
\V 8 Jk Jks_

V=
[ es-|| VyTs_

then HPF® = JEccJprgs, and it is cheap to obtain the QR decomposition of Jgrgs by the fol-
lowing well known means:

JBFGS = Q-R—i—uvT = Q(R+WUT) == QQE = Q—E .
Similarly, in the case that the iteration starts with the BFGS augmented model and the alternate
is the Gauss-Newton model, the QR factorization of J; can be obtained easily from the QR fac-

torization of Jprgs. For complete details, see Dennis-Schnabel (1983, pg.57). In the algorithm
below, we will use the notation J, and J, to denote the Jacobian or Jgrgs as is appropriate
depending on which is the alternate and which is the currently preferred model. We will use m,

and m, for the quadratic models themselves.

The Hybrid Algorithm

(1) Initialize k=1, A\, =0, sp=0=y,, and A;.
Set Current_model = Gauss-Newton; Alternate_model = BFGS.
Compute Fy = F(z;), Frnorm = || F¢ ||, and phik = || F; ||°.



(2)
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Set first =.TRUE., ifasl = 0 and compute J, = J(z;).
Rescale D; if neccessary.

If Current_model = Gauss-Newton Then J, = J,
Else J, = Jgrgs

End If

Solve for s to minimize || Fj + Jys ||, subject to || Dys || < A4

Set zf,, =2, + & and pnorm = || D s|.
Compute F(zf,,) and Frorml= || F(zf,)||, phikp = || F(zf:1)|]%

Compute: ared =1—(Fnorm1/Fnorm)?
pred =(|| Jes || /Frorm)?+2:(\}/*pnorm /Fnorm)?
dirder ——[(|| Jys || /Frorm)?+ (\}/* pnorm /Frorm)?;
rho =ared/pred.
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(6) If rho> .25 Then (* Probably a good step.)
If rho > .75 or \; =0 Then (* It was a good step.) Ay, ;=20 , N =X7;/2
Else 8,1 =24; , i1 =N
End If
Else (* Probably a bad step.)
If first =.TRUE. Then
first=_FALSE.,
Compute J, (* See the discussion before the algorithm.)
If |m (zf;,)-phikp | > 1.5-|m,(zf;,)- phikp | Then
Solve for s to minimize ||Fy+ J,s ||
subject to || Dis || < Ay.
Set zf%| =z, + 6 and pnorm2=1{|D;s]|.
Compute F(zf%,), Fnorm2= || F(z[%,) ],
and phikpp = || F(f%,)|}>.
If phikpp < phtkp Then
ol =zl
F(zf)=F(zl%,), k= Ja,
pnorm = pnorm?2, Fnorm1l= Fnorm?2, phtkp = phikpp.
Go to (5) (* Check fit of alternate model.)
End If.
End If.
End If.
If ared > 0 Then temp =.5
Else temp — .5-dirder /(dirder + .5-ared)
End If.
If (Frorm1 > 10-Fnorm or temp < .1) Then temp =.1
End If.
Ap,y=temp -min{A;, 10-pnorm}
Xes1=MN\;/temp
End If.

(7)  Check for convergence.
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(8) If rho < 10™ Then (* Bad step; compute another.)

tfasl = ifasl +1

If ifasl =5 Then
Exchange model preferences for next iteration
Go to (2)

End If.

Go to (3).

End If.

(9) Set x4, =2k, Fyryy=F(2fs1), Frorm = Fnorml, phtk = phikp.
If | m (2¢11)-phikp | > 1.5:|m,(2441)-phikp | Then
Exchange model preferences for next iteration
End If.

(10) Set k=k~+1, Go to (2).

5. Numerical Results.

In this section, we will try to compare a preliminary implementation of our hybrid algo-
rithm NONLSQ with the MINPACK subroutine LMDER and the NL2SOL subroutine NL2S1.
Our implementation is as close as possible to LMDER since we felt that the hybrid algorithm
should be viewed as a way to modify the Gauss-Newton method on large residual problems. In
fact, we didn’t even tune any of the constants involved in the LMDER code to find values that
gave better performance with our hybrid algorithm. All the runs were done in double precision on
the Data General MV-1000 at IMSL using stopping criteria of 1.0D-8 on the relative stepsize or

the relative change in the sum of squares. The 26 problems used in our test were:
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Problems 1-18 were the MINPACK-1 nonlinear least-squares test problems.

Problems 19-26 were the NL2SOL test problems that were not included in the MINPACK
test set. They were: 19.) Woods’ function, 20.) Zangwill’s function, 21.) Engvall’s function,

22.) Branin’s function, 23.) Beale’s function, 24.) Cragg’s and Levy’s function,

25.) the Davidon 1 function, 26.) Madsen’s function.

The results for LMDER and NONLSQ were indentical for most of the problems and so we
only present the results for Problems 7, 8, 9, 14, 15, 18, 26. These results are summarized in
Tables 1-8 where we follow the practice of using the ‘standard’ starting point for the problem the
first time the problem is listed, ten times that standard point if the problem is listed again, one
hundred times the standard starting point if there is a third listing, etc. For the problems listed,
we continue multiplying the standard initial guess by powers of ten until the intial point is too

large for us to even be able to compute the initial residuals. Convergence was never a problem.

These numerical results support the conclusions that for poor initial guesses and nonzero
residuals, the method suggested here may enjoy some advantages over the Levenberg-Marquardt
method. Therefore, further investigation seems justified; for example, we do not allow internal

doubling, and we have made use of the freedom in the parameter o, only enough to show that it

does affect performance.

The results in Table 7 show that (2.8¢) with a, =min{ 1, || JTF,||} is probably the best

choice of secant condition. We included a, =1 because of the relationship to ideas of Al-Baali
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and Fletcher (1983) mentioned in Section 2. The comparison of NONLSQ to NL2S1 is much
harder due to the differences in the implementation details, and so we will just present the NL2S1

results in Table 2 for completeness.

We hope that refinement of this simple and computationally convenient idea will lead to

improved algorithms for large residual nonlinear least squares.
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